Manganese-catalyzed epoxidations of alkenes in bicarbonate solutions.

نویسندگان

  • Benjamin S Lane
  • Matthew Vogt
  • Victoria J DeRose
  • Kevin Burgess
چکیده

This paper describes a method, discovered and refined by parallel screening, for the epoxidation of alkenes. It uses hydrogen peroxide as the terminal oxidant, is promoted by catalytic amounts (1.0-0.1 mol %) of manganese(2+) salts, and must be performed using at least catalytic amounts of bicarbonate buffer. Peroxymonocarbonate, HCO(4)(-), forms in the reaction, but without manganese, minimal epoxidation activity is observed in the solvents used for this research, that is, DMF and (t)BuOH. More than 30 d-block and f-block transition metal salts were screened for epoxidation activity under similar conditions, but the best catalyst found was MnSO(4). EPR studies show that Mn(2+) is initially consumed in the catalytic reaction but is regenerated toward the end of the process when presumably the hydrogen peroxide is spent. A variety of aryl-substituted, cyclic, and trialkyl-substituted alkenes were epoxidized under these conditions using 10 equiv of hydrogen peroxide, but monoalkyl-alkenes were not. To improve the substrate scope, and to increase the efficiency of hydrogen peroxide consumption, 68 diverse compounds were screened to find additives that would enhance the rate of the epoxidation reaction relative to a competing disproportionation of hydrogen peroxide. Successful additives were 6 mol % sodium acetate in the (t)BuOH system and 4 mol % salicylic acid in the DMF system. These additives enhanced the rate of the desired epoxidation reaction by 2-3 times. Reactions performed in the presence of these additives require less hydrogen peroxide and shorter reaction times, and they enhance the yields obtained from less reactive alkene substrates. Possible mechanisms for the reaction are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manganese-substituted carbonic anhydrase as a new peroxidase.

Carbonic anhydrase is a zinc metalloenzyme that catalyzes the hydration of carbon dioxide to bicarbonate. Replacing the active-site zinc with manganese yielded manganese-substituted carbonic anhydrase (CA[Mn]), which shows peroxidase activity with a bicarbonate-dependent mechanism. In the presence of bicarbonate and hydrogen peroxide, (CA[Mn]) catalyzed the efficient oxidation of o-dianisidine ...

متن کامل

Metal-catalyzed epoxidations of alkenes with hydrogen peroxide.

3. Soluble Metal Oxides 2459 3.1. Polyoxometalates 2459 3.2. Peroxotungstates 2459 3.3. Peroxomolybdates 2460 3.4. Methyltrioxorhenium 2461 3.5. Other Metal Oxides 2461 4. Metal Oxides Generated in Situ 2461 4.1. Selenium and Arsenic Compounds 2461 4.2. Simple Metal Salts 2462 5. Coordination Complexes 2463 5.1. Manganese Porphyrins 2463 5.2. Iron Porphyrins 2464 5.3. Manganese Salen Complexes ...

متن کامل

Strengths, Weaknesses, Opportunities and Threats: Computational Studies of Mn- and Fe-Catalyzed Epoxidations

The importance of epoxides as synthetic intermediates in a number of highly added-value chemicals, as well as the search for novel and more sustainable chemical processes have brought considerable attention to the catalytic activity of manganese and iron complexes towards the epoxidation of alkenes using non-toxic terminal oxidants. Particular attention has been given to Mn(salen) and Fe(porphy...

متن کامل

A cheap, catalytic, scalable, and environmentally benign method for alkene epoxidations.

Benign Method for Alkene Epoxidations Benjamin S. Lane and Kevin Burgess* Department of Chemistry, Texas A & M UniVersity PO Box 30012, College Station, Texas 77842-3012 ReceiVed NoVember 17, 2000 This paper reports a simple method wherein manganese (2+) salts, for example, MnSO4, catalyze epoxidation of alkenes using 30% aqueous hydrogen peroxide as the terminal oxidant. The reactions are perf...

متن کامل

Peroxynitric Acid: A Convenient Oxygen Source for Oxidation of Organic Compounds Catalyzed by Polyimide-Supported Manganese (III) Tetrakis(4-methoxylphenyl)porphyrin Acetate

In this work, a polyimide (PI) containing triazole units was synthesized using 3,5-diamino-1,2,4-triazole and pyromellitic dianhydride in N-methyl-2-pyrrolidinone. This polymer was used as the support of manganese (III) tetrakis(4-methoxylphenyl)porphyrin acetate to attain a heterogeneous catalyst; namely Mn(T4-OMePP)OAc@PI. The synthesized PI and Mn(T4-OMePP)OAc@PI were characterized by di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 124 40  شماره 

صفحات  -

تاریخ انتشار 2002